Exercise 7.2.9

Prove that Eq. (7.12) is exact in the sense of Eq. (7.9), provided that $\alpha(x)$ satisfies Eq. (7.14).

Solution

Eq. (7.12) is on page 336 .

$$
\begin{equation*}
\alpha(x) \frac{d y}{d x}+\alpha(x) p(x) y=\alpha(x) q(x) \tag{7.12}
\end{equation*}
$$

Here $\alpha(x)$ is an integrating factor that's been multiplied by both sides of a linear first-order inhomogeneous ODE. It satisfies

$$
\begin{equation*}
\frac{d \alpha}{d x}=\alpha(x) p(x) \tag{7.14}
\end{equation*}
$$

Bring all terms in Eq. (7.12) to the left side.

$$
\alpha(x) \frac{d y}{d x}+\alpha(x) p(x) y-\alpha(x) q(x)=0
$$

Multiply both sides by $d x$.

$$
[\alpha(x) p(x) y-\alpha(x) q(x)] d x+[\alpha(x)] d y=0
$$

For this ODE to be exact, it must satisfy the condition in Eq. (7.9).

$$
\begin{aligned}
\frac{\partial}{\partial y}[\alpha(x) p(x) y-\alpha(x) q(x)] & \stackrel{?}{=} \frac{\partial}{\partial x}[\alpha(x)] \\
\alpha(x) p(x) & \stackrel{?}{=} \frac{d \alpha}{d x} \\
\alpha(x) p(x) & =\alpha(x) p(x)
\end{aligned}
$$

Because this condition is satisfied, the ODE in Eq. (7.12) is exact, and there exists a potential function $\varphi=\varphi(x, y)$ such that

$$
\begin{aligned}
& \frac{\partial \varphi}{\partial x}=\alpha(x) p(x) y-\alpha(x) q(x) \\
& \frac{\partial \varphi}{\partial y}=\alpha(x)
\end{aligned}
$$

